Phase locking of Josephson junction arrays
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We report the results of a stability analysis of coherent oscillations in series arrays of Josephson
junctions with a matched resistive load. We find that arbitrarily large, dc biased arrays of
Josephson junctions will phase lock most strongly when the capacitance parameter B.=1,and
the bias current is about twice the critical current of the individual junctions.

Phase-locked series arrays of Josephson junctions are of
interest as local oscillators in the microwave and millimeter
wave regime.'! These are essential components in any very
high frequency electronic technology such as mm-wave re-
ceivers and spectrum analyzers. Arrays have the advantage
over single-junction local oscillators in that the output pow-
er and source impedance can be increased to practically use-
ful levels. The conditions under which arrays of Josephson
junctions will lock coherently have been analyzed using per-
turbative techniques by Jain er al.' While extremely useful,
their analysis is not applicable over all ranges of bias currents
or for all the relevant ranges of junction capacitance. Here
we employ a more general approach to calculate the stability
of coherent oscillations in the practically important case of
an arbitrarily large array of Josephson junctions shunted by
a matched resistive load. A fuller development of this ap-
proach and its application to a wide variety of array circuits
will be discussed elsewhere.”

To analyze this circuit (see the inset of Fig. 1) we model
the junctions using the well-known shunted junction model.
In the usual reduced units* the equations for the array are

N

Bupn+ox +sin(@) +~ Yo =1

N /&

k=12,..,N, n
where N is the number of identical junctions, I is the nor-
malized bias current, B, is a dimensionless measure of the
capacitance of the junctions, and @, is the difference in the
phases of the quasiclassical superconducting wave functions
on the two sides of the k th junction. This model is a good
approximation over a wide range of 5, including weak-link
(or superconducting/normal metal/superconducting-type)
junctions (3. < 1), shunted tunnel junctions (8, =~ 1), and
unshunted tunnel junctions at voltages below the energy gap
B.>1).

To analyze the coherent solution of such an array, we
note that in this solution all of the junctions oscillate togeth-
er, @, = @,- Therefore, the N equations for the array reduce
to

B.$o + 2o + sin(@o) = L. (2)
This is equivalent to the equation for a single junction with
half the shunt resistance of the junctions in the array. Thus
the calculation of the coherent state for an arbitrarily large
array with a matched resistive load reduces to the equivalent

" calculation for a single junction.
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To determine the stability of the coherent solution we
consider small perturbations about it, ¢, = @, + %, Lin-
earizing around the coherent solution results in a set of linear
differential equations with periodic coefficients:

.. . | A
Btk + Mk + cos(@o) i + N 2771‘ =0,
=1
k=12,..,N, 3)

where @, () is the periodic function, of period 7, that solves
Eq. (2).

We can greatly simplify the linearized equations by tak-
ing advantage of the permutation symmetry of the system.
[ Any permutation, 7,«>17,, leaves Eq. (3) unchanged.] We
transform to the natural coordinates of this system, which
are the mean coordinate, & = (1/N)2¥_ ,7,,and the N — 1
relative coordinates, £, = 77, — 7 - Equation (3) then
becomes

Bl + & +cos(@)é =0 k=12, ,N—1, (4a)
B3+ 28 + cos(@,)? =0. (4b)

This transformation decouples all N coordinates in the prob-
lem. Further simplification results because all of the relative
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FIG. 1. Contours of the largest real part of the Floguet exponents are plot-
ted as a function of the junction capacitance §, and the bias current . The
coherent solution is unstable for Re(p) > 0 and is most stable for the most
negative exponents. The plot relates the stability of arbitrarily large arrays
of junctions with a load resistance, R = N. The circuit we are considering is
shown in the inset.
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coordinates obey the same equation. Thus, because of sym-
metry, the stability analysis of the original N equations re-
duces to solving the above set of two equations. The coherent
solution @, (7) will remain stable as long as the relative co-
ordinates do not grow. We therefore focus our attention on
Eq. (4a).

Equation (4a) arises in many physical problems and has
been analyzed thoroughly using Floquet theory.® The analy-
sis shows that any solution to this equation can be expressed
as a linear combination of two fundamental solutions,
6, () and §, (1), which are specified by the initial condi-
tions: £,(0)=1,£,(0)=0,&,(0)=0,£,(0) =1. Since
cos(g,) is a periodic function, {,(t+ T) and §,(t + T)
must also be solutions to Eq. (4a), which can be expressed in
terms of £, (¢) and £, (¢). This leads to the equation

(§.,(z+ T)) _ (a.mé,,(r))(éau)) )
S+ & (DD (1))

The eigensolutions of Eq. (5) are called the Floquet solu-
tions and <can be put in the form ¢,

= e”ix,(t), &= e”ixz(t), where y,(¢) and y,(¢) are peri-
odic functions of period T'and p, + p, = — 1/8.. The p’s
are called the Floquet exponents and their real parts deter-
mine the stability of the perturbations. They are related to
the eigenvalues A; of the matrix in Eq. (5) byp; = In(4,)/T.
If both Re(p,) <0 and Re(p,) <0, the perturbations decay
and the coherent solution is linearly stable. If either
Re(p,) >0 or Re(p,) > 0, the perturbations grow and the
coherent solution is linearly unstable. Finally, if either
Re(p,) =0 or Re(p,) =0, then the coherent state is neu-
trally stable and nonlinear terms omitted in writing Eq.(3)
determine the stability of g, (¢).

Before considering the general case we examine the two
limiting regimes, B, — « and B, = 0. In the limit 8,> 1,
1 + p>—0, and the condition for linear stability cannot be
satisfied. Numerically, we find neutral stability for the cir-
cuit being analyzed here. An immediate conclusion from this
result is that arrays of junctions with 3,> 1 will not phase
lock strongly.

In the highly damped limit, one can take 8. = 0 and Eq.
(4a) can be solved exactly.® Direct integration of Eq. (4a) in
this case yields

§=C, exp( - f cos(gp,)dt ’)’ (6)
o

where @, solves Eq. (2) and C, is an arbitrary constant.
Differentiating Eq. (2), we can determine that
cos(@,) = — 2./, Substituting this into Eq. (6) yields
the result

§=Ci@o)*=CiEY/ g +cos(ED], &=\ Up)" ~1,
o))

where we have used the well known solution to Eq. (2) for
B. = 0.° This solution is periodic; it neither grows nor dimin-
ishes with time. Therefore, we see that the coherent solution
is also neutrally stable for 5, = 0.

To analyze the stability of the coherent solution in gen-
eral we have numerically calculated the Floquet exponents
associated with the relative coordinate by diagonalizing the
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FIG. 2. Series of snapshots of the phases @, of a ten-junction array at eight
points in the cycle for three sets of array parameters. The phases are mea-
sured as angles from vertical. Viewed successively from left to right, the
snapshots form a movie of the phase motion. (a) The junctions have phase
locked and oscj]late coherently, I, = 2.3, 8. = 0.75. All ten junctions have
the same phase. (b) The period-doubled, symmetry-broken solution that
appears just inside the unstable region, I, = 1.7, 8, = 1. Five junctions
have one phase and the other five have another phase. (c) A 10% spread in
the critical currents, capacitance parameters, and shunt resistances has
been introduced. This simulation shows that the coherent solution can be
stable even when the junctions are not identical. [, = 2.3 and the average S,
= 0.75. Here all ten junctions have different phases.
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matrix in Eq. (5). In Fig. 1 we plot contours of the largest
real part of the Floquet exponents as a function of the junc-
tion capacitance 3. and the bias current /5. The heavy line in
Fig. 1 is the Re(p) = O contour, and it separates the stable
regions from the unstable regions. The coherent solution is
most stable for the most negative exponents. The strongest
phase locking occurs for S, in the range 0.5-1 and 7, in the
range 2-2.5. The plot relates the stability of arbitrarily large
arrays of junctions where the load resistance is R = N. The
figure also shows that Re(p)—0 in the limits 8,> 1 and
B. <1, in agreement with the analytic results presented
above. To our knowledge these results are the first to demon-
strate that a series array of Josephson junctions can phase
lock coherently with a purely resistive load.

Figure 2 shows snapshots of the phases ¢, of a ten-junc-
tion array at eight points in the cycle for three different sets
of parameters. The phases are measured as angles from verti-
cal as they would be in the pendulum analogy to Josephson
junctions.” Viewed successively from left to right, snapshots
form a movie of the phase motion. Figure 2(a) shows the
situation where the junctions have phase locked and oscillate
coherently. When the stability boundary [the Re(p) =0
contour] is crossed, we observe a period doubling and the
resulting solution is not completely coherent. Instead the
phases of the junctions divide into two coherent subgroups
as shown in Fig. 2(b). In this solution at least [ (N — 1)/2]!
symmetries of the original equations are broken. Further, in
the unstable region more bifurcations occur, eventually lead-
ing to chaos.

Figure 2(c) demonstrates that the coherent solution
can be stable even when the junctions are not identical. In
this simulation of a ten-junction array we have introduced a
10% spread in the critical currents, the capacitance param-
eters, and the shunt resistances. In this figure the lengths of
the lines that show the positions of the ten phases are propor-
tional to the critical currents of the junctions.
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In conclusion, we have presented a general approach to
the stability analysis of series arrays of Josephson junctions
that can be readily implemented numerically. Using this
analysis, we have demonstrated that arrays with matched
resistive loads can phase lock and oscillate coherently. This
analysis can be extended to handle arrays with any load and
should prove useful in the design of practical arrays.
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