Dynamical states and stability of linear arrays of Josephson junctions
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We consider a one-dimensional array of dc-biased Josephson junctions shunted by a load of
passive circuit elements. The load serves to couple the ac Josephson effect oscillations in the
various junctions, giving rise to dynamical states of the system that do not appear for a single
-junction. Our results demonstrate two distinct phase-locked states of the array, hysteresis, and
chaotic behavior depending on the load and the value of the bias current. Implications of these
results for local oscillator applications of such arrays are also discussed.

When the bias current feeding a Josephson junction ex-
ceeds the junction’s critical current, the supercurrent flow-
ing through the junction oscillates at a frequency that is pro-
portional to the voltage across the junction. This is the
familiar ac Josephson effect. Loading the junction with an
inductor-capacitor (LC) circuit leads to a competition
between the Josephson frequency and the resonant frequen-
cy of the LC circuit. The interaction of the two frequencies
can result in nontrivial dynamical behavior including bifur-
cations and chaos.”? In this letter we go beyond single junc-
tions and discuss the behavior of one-dimensional arrays of
Josephson junctions. Such arrays have been proposed and
analyzed for applications as rf generators and local oscilla-
tors in the mm/sub-mm wave range. In the case of an array,
an additional effect of the load is to couple the oscillations of
the junctions. These interactions of the supercurrent oscilla-
tions of the various junctions lead to dynamical states of the
array that do not exist for a single junction. As we show,
these include two distinct phase-locked states and hysteresis
between them, as well as period-doubled and chaotic states.
In this letter we use a combination of analytic solutions and
numerical simulations to examine this behavior.

To describe the behavior of the individual junctions we
employ the well-known resistantly shunted junction (RSJ)
model.* Using the customary reduced units, the current con-
servation equations for the N junctions read®

@i +sinlgy) +1, =1p. (N
Here ¢, is the quantum phase difference across the & th junc-
tion, I, is the current through the load, and I is the bias

current. In addition, we have one equation that relates the
voltage across the array to the current through the load:

N

k=1
where .7 is a linear integrodifferential operator that de-
pends on the impedance of the load.

We have performed numerical integration of these equa-
tions using a fourth-order Runge~Kutta routine.® The simu-
lations show that there are two phase-locked solutions, an in-
phase solution and an antiphase solution, which we describe
below. Depending on the load chosen, ncither, one, or both
of these phase-locked solutions can be stable for a given bias
current. Much of the behavior of the arrays can be under-
stood in terms of these two solutions.

In the in-phase case each junction oscillates with the
same frequency and phase, that is, @, = @;. When all of the
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phase differences are the same, the system of equations, (1)
and (2), reduce to the equation for a single junction shunted
by a load whose current-voltage characteristic is given by
V=.2(I.)/N. Thus, setting aside questions of stability,
the in-phase case reduces to the simpler and previously stud-
ied problem of a single junction with a suitably scaled load.
This solution has stimulated interest for rf generator applica-
tions because such a phase-locked array of ¥ junctions pro-
vides N times the output voltage and N ? times the output
power as does a single junction.

The other phase-locked solution that we observe for ar-
rays of two or three junctions is an antiphase solution in
which all of the junctions undergo the same T periodic oscil-
lation but with staggered phases:

@) =@ (t+Tk/N) k=12,.N—1. (3)

The solution g, (?) is a periodic function of time so we can
write it as

po() = 3 A4,e"7. 4)
p=1
Thus in the antiphase solution the voltage across the array is

N Tk ol i2mNp
V= (t+__) — —'—A et?n-pt/T.
k§=:| Po N p=N,22N,3N,.,. T i
(5)

Hence in the antiphase case the load current has frequency
componentsonlyat (27N /T,47N /T,...);allother frequency
components vanish. The amplitudes of the nonzero harmon-
ics decrease with increasing bias current, so for high bias
currents little ac current flows through the load. With a
small current flowing through the load, there is only weak
coupling of the junctions. In the limit of vanishingly small
load current, the above equations for the array of junctions
decouple into N independent equations, each identical to the
equation for a single junction with no external load. The
actual behavior of an array approaches this limiting solution
as the bias current is increased and the ac Josephson oscilla-
tions become increasingly sinusoidal. When there are more
than three junctions in the array, the antiphase solution still
exists, by which we mean that we observe a solution where
the sum of the fundamental Josephson oscillations adds to
zero. However, for more than three junctions the phase dis-
tribution is more complicated than the simple staggering
found for two and three junctions.

Our simulations show that the in-phase solution is stable
when the impedance of the load is inductive at the funda-
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FIG. 1. (a) Current-voltage curve for a three-junction array with an induc-
tive load, B, = 3, and a blocking capacitor, B = 5. The dashed lines repre-
sent the in-phase and the limiting antiphase solutions. The curve shows that
the in-phase solution is stable for an inductive load. (b) Current-voltage
curve for a three-junction array with a capacitive load, 8. = 3. This figure
shows that the antiphase solution is stable at high bias for a capacitive load.

mental Josephson frequency and that the antiphase solution
is stable when it is capacitive. This confirms the perturbation
calculations for high bias currents of Jain et al.* There are
also regimes of more complex dynamics, where neither
phase-locked solution is stable, which exist for arrays biased
close to their critical currents. These results are discussed
below.

In Fig. 1 we compare the observed behavior for induc-
tive and capacitive loads. The solid line in Fig. 1(a) is the
current-voltage curve for a three-junction array shunted by
an inductive load with a blocking capacitor that is included
to direct the dc current through the junctions. The dashed
lines in the figure are single-junction solutions that represent
the in-phase and the limiting antiphase solutions described
above. The in-phase solution was obtained numerically, and
the limiting antiphase solution is the well-known current-
voltage curve of a single junction in the RSY mode. With an
inductive load, only the in-phase solution is stable and the
array responds like a single junction with an external load of
ZL(I.)/N over the entire range of bias currents.

Figure 1(b) shows the same curves for a three-junction
array shunted by a capacitor. In this case our simulations
show that the antiphase solution is stable for high bias cur-
rents and is very close to the limiting independent junction
solution. However, for bias currents near the critical current
the antiphase solution goes unstable and there is a kink visi-
ble in the current-voltage curve. Below the kink neither
phase-locked solution is stable. By taking phase portraits of
the motion on both sides of the kink, we have determined
that it signals a symmetry breaking bifurcation. The symme-
try that is broken is a permutation symmetry; the system is
unchanged under the interchange of any two junctions. Fig-
ure 2 shows some phase portraits of the motion. In these
portraits a closed loop corresponds to periodic motion. The
sequence of phase portraits shows the symmetry breaking
followed by a cascade of period-doubling bifurcations and

(b)

FIG. 2. (a)-(e) are phase portraits of the
motion, in the vicinity of the bifurcation

(c) seen in 1(b), showing symmetry breaking

followed by a period-doubling cascade.

The portraits are projections of the trajec-

(d) (e)
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tory in phase space onto the sin(g,) vs
sin(g,) plane. (f) is a Poincaré section of
chaotic motion showing the fractal struc-
ture of the strange attractor.
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FIG. 3. Current-voltage curve for a three-junction array shunted by a series
LC circuit: B = 5; B, = 0.1 The dashed lines represent the in-phase and
the antiphase solutions. The arrow on the right indicates the value of
wg = (BcBL) ™" = J2. This figure shows the hysteresis between the in-
phase and antiphase solutions.

eventually leading to chaos. Figure 2(f) is a Poincaré section
of the chaotic motion that shows the fractal structure of the
strange attractor. Chaotic behavior is observed for arrays
with capacitive loads, N3, > 1, biased in the vicinity of the
critical current. The range of bias currents over which chaos
is observed increases with increasing ..

When the array is shunted by a series LC circuit, as in
Fig. 3, the reactance of the load at the Josephson frequency
goes from capacitive to inductive as the bias current is in-
creased. In this case the simulations show that the in-phase
and antiphase solutions exchange stability in a way that pro-
duces a hysteresis loop in the current-voltage curve. Begin-
ning at low bias current the antiphase solution remains sta-
ble, as the bias current is increased, until the fundamental
Josephson frequency of the antiphase solution exceeds the
LC resonant frequency [wg = (BcB.) '] and the-lvad
becomes inductive. At that point the system jumps to the in-
phase solution and the fundamental Josephson oscillation
jumps to a higher frequency. This makes the load look more
inductive. The in-phase solution will thus remain stable untit
the bias current is decreased to the point at which the funda-
mental Josephson frequency of the in phase is less than the
LC resonant frequency, and the load looks capacitive once
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again. Preliminary results show that for a parallel LC load,
the in-phase and antiphase solutions still exchange stability
at the LC resonant frequency but that there is no hysteresis.
The difference between the series and parallel cases is that a
series LC circuit becomes a short at resonance whereas a
parallel LC circuit becomes an open circuit. Thus there is no
coupling between the junctions at resonance for the parallel
case, and the transition to the antiphase solution is contin-
uous.

From our simulations we conclude that the minimum
number of junctions needed in an array to observe the two
phase-locked solutions and hysteresis is two. The in-phase
and antiphase solutions exist for arrays with any number of
junctions. We have observed these solutions in simulations
with up to 50 junctions, but we have not made systematic
studies of their stability for arrays with more than three junc-
tions.

Finally, our results demonstrate that some care must be
exercised in constructing Josephson junction local oscillator
arrays when capacitive circuit elements are present, for ex-
ample, due to the junction capacitance itself. As shown by
Jain er al. and confirmed over a wide range of conditions by
our simulations, in-phase locking requires that the load look
inductive at the operating frequency. However, our results
show that when tuning the load to look inductive, considera-
tion must also be given to the effects of hysteresis or the
reduction of the coupling strength between the individual
junctions near any resonant frequency of the load.
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