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Gradual channel approximation
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Gradual channel approximation
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Gradual channel approximation
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Gradual channel approximation
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Gradual channel approximation
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MOSFET - saturation voltage
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A MOSFET in saturation is a voltage controlled current source.



MOSFET — saturation current

Use the saturation voltage at
pinch-off to determine the
saturation current
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MOSFET - saturation regime
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MOSFET - linear regime

Channel conductance in the ootz |-

linear regime. For small V, .
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MOSFET - saturation regime
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A MOSFET in the saturation regime acts like a voltage controlled current source.



MOSFET — saturation

Potential Electric field strength

Alexander Schiffmann, Master Thesis (2016)



MOSFET — saturation regime
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high frequencies
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For large E, Ohm's law (j = neuE) is not valid.

The electron velocity saturates.

For velocity saturation:
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CMOS inverter

Dissipates little power except
when switching

E = QVdd — CVde
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Gate delay
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CMOS inverter
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Moore’s Law: The number of transistors on microchips doubles every two years [Sa\lle
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced

OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.
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over-time.png, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=98219918



COnSta nt E'fiEId Scaling polysilicon gate

body source drain

inversion layer gate oxide
channel

Gate length L, transistor width Z, oxide thickness t_, are scaled down.

V. V.

4 and Vrare reduced to keep the electric field constant.

Power density remains constant.

L~45¢,

1975 - 1990: "Days of happy scaling"



Constant E-field Scaling
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Power per transistor decreases like L%. Power per unit area remains constant.



The heat dissipation problem

Microprocessors are hot ~ 100 C
Hotter operation will cause dopants to diffuse

When more transistors are put on a chip they must dissipate less power.

Power per transistor decreases like L2.



Dual stress liners

DUAL STRESS LINER
TRANSISTOR CROSS-SECTION

Tensile silicon nitride film over the NMOS and a compressive silicon
nitride film over the PMOS improves the mobility.

-venice_2.html

http://www.xbitlabs.com/articles/cpu/display/athlon64



Gate dielectric

Thinner than 1 nm:
electrons tunnel

Large dielectric constant
desirable

£,(Si0,) ~ 4

€(SisNy) ~ 7

Siliconsubstrate




High-k dielectrics

12.7 nm

http://nano.boisestate.edu/research-areas/gate-oxide-studies/



Short channel effects

Short-channel
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CMOS SO' (Semiconductor-on-insulator)

Figure 26.16 SOI MOSFET with first-level metal, schematic and TEM. Courtesy Brandon Van Leer, FEI Company4

Fransila



Subthreshold current

For V <V, the transistor should switch off but there is a diffusion current. The
current is not really off until ~ 0.5 V below the threshold voltage.
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Subthreshold slope: 70-100 mV/decade



Subthreshold current
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