

Einleitung / Physikalische Größen

Physik M

Vorlesungen: Peter Hadley, Karin Zojer

Vorführungen: Roland Lammegger

	en		
Lehrplan Bücher Testfragen	Physikalische Größen	Themen	Fähigkeiten
Apps	Herring Kapitel 1	MaßeinheitMessgenauigkeit	DimensionsanalyseErwartungswert und Standardabweichung
	Kräfte und Punktmechanik		
	Herring Kapitel 2.1 - 2.3	Newtonsches GesetzCoulombkraftLorentzkraftReibungskraft	 Vektoraddition Einheitsvektoren Vector-Kreuzprodukt Differentiation Integration
	Arbeit und Energie		
	Herring Kapitel 2.6, 2.10	ArbeitKonservative KräftePotentielle EnergieGravitationskraft	Vector dot productLinienintegraleGradient

http://www.if.tugraz.at/physikm.html

Prüfung

Notebook: Excel, Mathematica,...

Bücher (als pdf)

Notizen (als pdf)

W-lan: Google, Wikipedia, Wolfram Alpha, ...

Sie dürfen nicht mit anderen zu kommunizieren.

511.015 Physik M

en

Lehrplan

Bücher

Testfragen

Apps

Konvertieren

Konvertieren Sie 9 g/cm³ auf kg/m³.

 $\frac{\mathrm{kg}}{\mathrm{m}^3}$

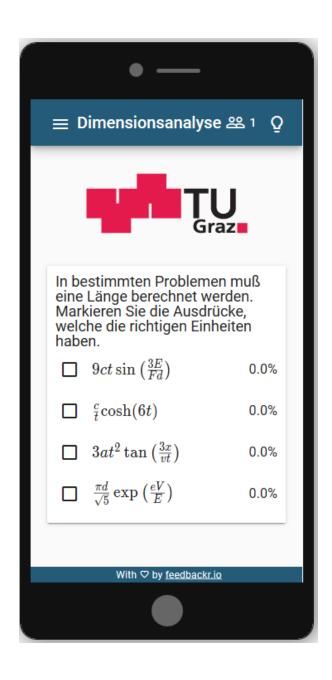
submit

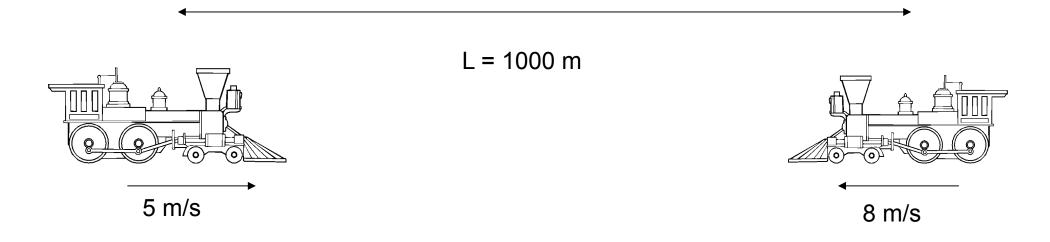
multiplizieren mit eins

Dimensionsanalyse

Die Dimensionsanalyse ist eine Methode, um zu prüfen, ob ein hergeleiteter Ausdruck möglicherweise falsch ist. Angenommen, ein Problem enthält eine Masse m [kg], eine Länge L [m], eine Zeit t [s] und eine Kraft F [N]. Sie sollen die Geschwindigkeit berechnen. Der Ausdrücke 3L/t und π $\frac{Ft}{m}$ könnten korrekt sein, da sie die Einheit [m/s] besitzen. Die Ausdrücke 3Lt und π $\frac{F}{m}$ müssen falsch sein, da sie nicht die Einheit [m/s] haben.

Wann immer Sie einen Ausdruck herleiten, sollten Sie die Einheiten prüfen. Sind die Einheiten falsch, haben Sie einen Fehler in der Herleitung.

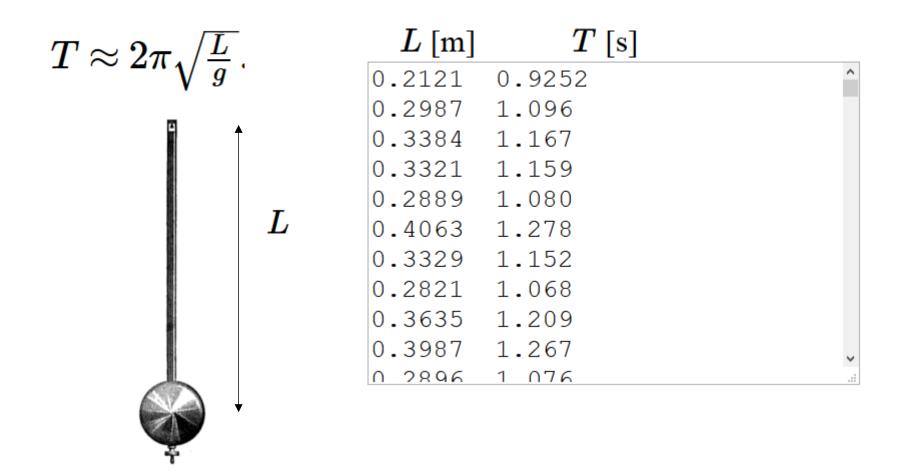

Das Argument einer Funktion wie sin, cos, exp, of log muß einheitenlos sein. Ausdrücke wie $\sin\left(\frac{Ft^2}{mL}\right)$ könnten richtig sein, während $\sin\left(\frac{Ft}{mL}\right)$ falsch sein muß.


Einheiten

	Größe	Einheit	Symbol
7 Basiseinheiten	Zeit	Sekunde	s
	Länge	Meter	m
	Masse	Kilogramm	kg
	elektrische Stromstärke	Ampere	A
	Temperatur	Kelvin	K
	Lichtstärke	Candela	cd
	Stoffmenge	Mol	mol
	Geschwindigkeit		$\frac{\mathbf{m}}{\mathbf{s}}$
	Beschleunigung		$\frac{ ext{m}}{ ext{s}}$ $\frac{ ext{m}}{ ext{s}^2}$
	Kraft	Newton	$ m N=rac{kgm}{s^2}$
	Arbeit, Energie	Joule	$ m J=N~m=rac{kg~m^2}{s^2}$
	Leistung	Watt	$\mathrm{W}=rac{\mathrm{J}}{\mathrm{s}}=rac{\mathrm{kg}\mathrm{m}^2}{\mathrm{s}^3}$
	elektrische Ladung	Coulomb	$\mathbf{C} = \mathbf{A} \; \mathbf{s}$
	elektrische Spannung	Volt	$ m V=rac{W}{A}=rac{kg~m^2}{A~s^3}$
	elektrische Feldstärke		$rac{ m V}{ m m}=rac{ m kgm}{ m As^3}$
	elektrische Kapazität	Farad	$\mathrm{F}=rac{\mathrm{C}}{\mathrm{V}}=rac{\mathrm{A}^2\mathrm{s}^4}{\mathrm{kg}\mathrm{m}^2}$
	elektrischer Widerstand	Ohm	$\Omega = rac{ ext{V}}{ ext{A}} = rac{ ext{kg m}^2}{ ext{A}^2 ext{s}^3}$
	magnetische Feldstärke		$\frac{A}{m}$

.

https://fbr.io/join/toejp


überprüfen Sie die Einheiten bei jedem Schritt

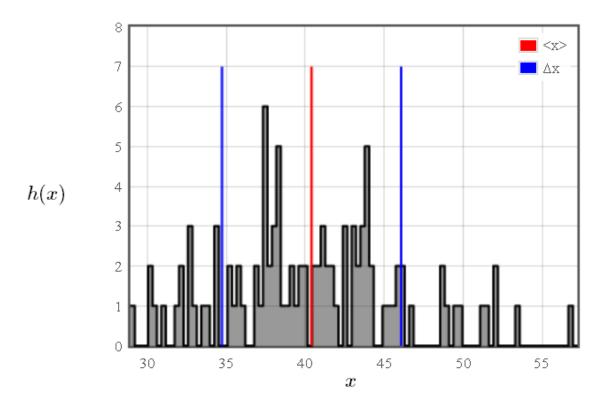
Fähigkeiten

Einheiten

- Sie müssen in der Lage sein, Einheiten passend umzuwandeln. Zum Beispiel müssen Sie es beherrschen [km/h] in [m/s] umzuwandeln.
- Dimensionsanalyse: Sei m [kg] die Masse, L [m] die Länge, t [s] die Zeit und F [N] die Kraft. Gefragt ist die Geschwindigkeit. Die Ausdrücke 3L/t und π könnten korrekt sein, da sie die Einheit [m/s] haben. Die Ausdrücke 3Lt und π müssen falsch sein, da sie nicht die Einheit [m/s] haben. Beim Ableiten eines Ausdrucks sollten Sie also immer auf die Einheiten achten. Sind die Einheiten falsch, haben Sie einen Fehler gemacht.

Datenanalyse

g = Erdbeschleunigung an der Erdoberfläche


Mittelwert und Standardabweichung

Der Mittelwert von N Datenpunkten ist

$$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i$$
.

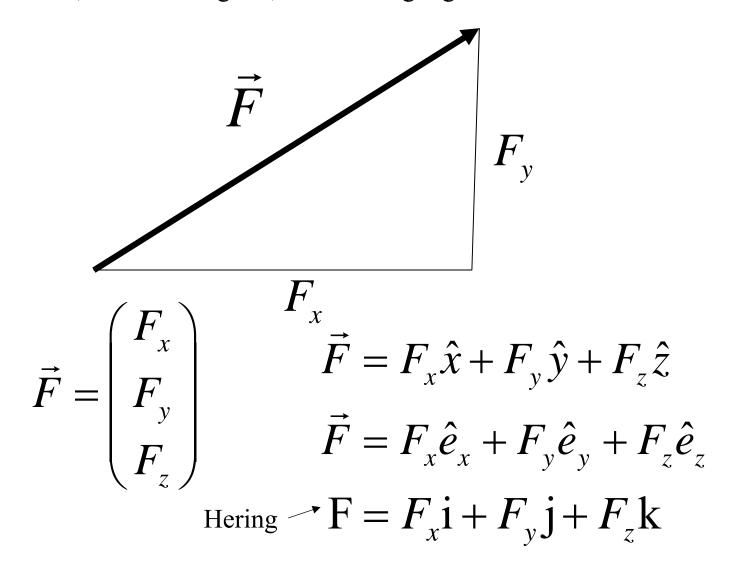
Die Standardabweichung Δx ist die Quadratwurzel des Mittelwertes der Quadrate $\langle x^2 \rangle = \frac{1}{N} \sum x_i^2$ minus des Quadrates des Mittelwertes $\langle x \rangle^2 = \left(\frac{1}{N} \sum x_i\right)^2$.

$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$
.

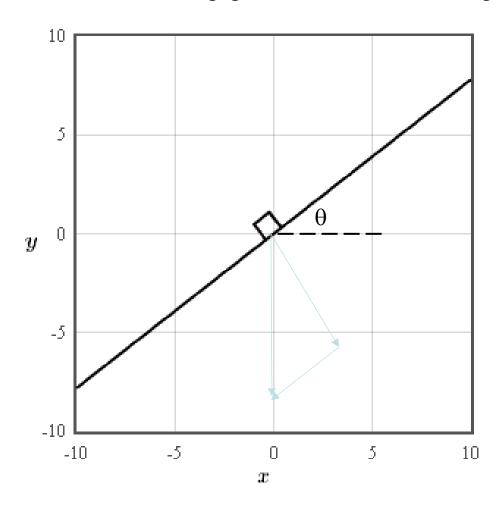
Fähigkeiten

Arbeiten mit Daten

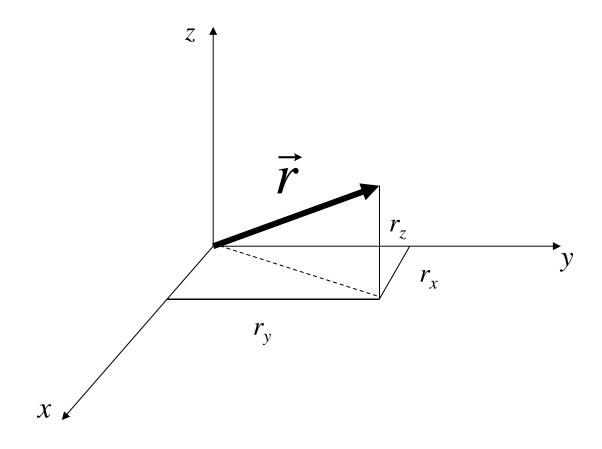
Manchmal erhält man Daten in Form von Textspalten. Sie sollten in der Lage sein:


- Erwartungswert und Standardabweichung jeder Spalte zu berechnen;
- alle Werte einer Spalte mit einem Wert zu multiplizieren (z.B. könnte eine Spalte die Beschleunigung eines Teilchens zu verschiedenen Zeiten repräsentieren. Multipliziert mit der Masse liefert das die jeweilige Kraft);

Vektoren

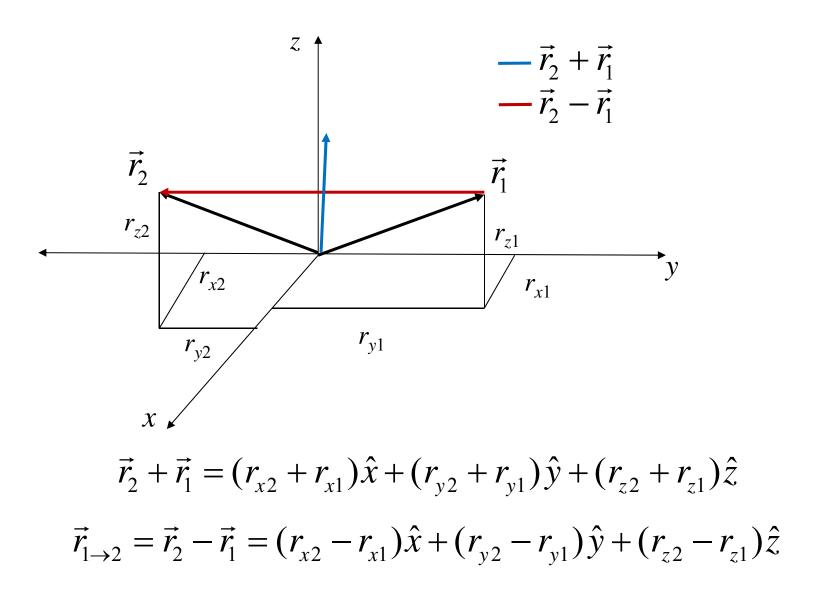

Vektoren

Kraft, Geschwindigkeit, Beschleunigung sind Vektoren

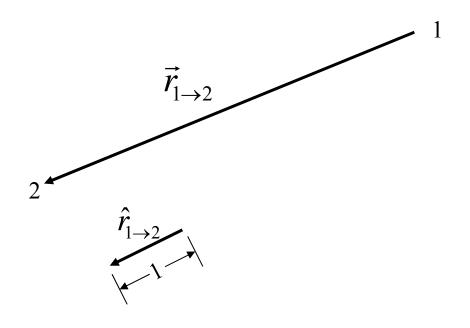


Vektoren zerlegen

Ein Klotz der Masse m = 95 g wird auf eine schiefe Ebene gelegt, welche um einen Winkel von 38° gegenüber der Horizontalen gekippt ist.



Länge von Vektor \vec{r}



$$\left| \vec{r} \right| = \sqrt{r_x^2 + r_y^2 + r_z^2}$$
 Pythagoras

Vektoraddition

Einheitsvektor $\hat{r}_{1\rightarrow 2}$

$$\hat{r}_{1\to 2} = \frac{\vec{r}_{1\to 2}}{|\vec{r}_{1\to 2}|} = \frac{(r_{2x} - r_{1x})\hat{x} + (r_{2y} - r_{1y})\hat{y} + (r_{2z} - r_{1z})\hat{z}}{\sqrt{(r_{2x} - r_{1x})^2 + (r_{2y} - r_{1y})^2 + (r_{2z} - r_{1z})^2}}$$

511.015 Physik M

Lehrplan

Bücher

Formel

Sammlung

Fähigkeiten

Apps

Testfragen

Vorlesungen

Einheitsvektoren

Wie lautet der Einheitsvektor, welcher von dieser Position

$$\vec{r}_1 = -2\hat{x} + 2\hat{y} + 5\hat{z}$$
 [m],

zu dieser Position zeigt:

$$\vec{r}_2 = 2\hat{x} + 4\hat{y} - 2\hat{z}$$
 [m]?

Kraft zwischen zwei Elektronen

Die elektrostatische Kraft, die auf Elektron 1 aufgrund der Ladung von Elektron 2 wirkt, ist durch das Coulombkraft Gesetz gegeben:

$$ec{F} = rac{e^2}{4\pi\epsilon_0 |ec{r}_2 - ec{r}_1|^2} \, \hat{r}_{2
ightarrow 1} \quad ext{[N]}$$

Dabei ist $e = 1.6022 \times 10^{-19}$ C die Elementarladung, $\epsilon_0 = 8.854 \times 10^{-12}$ F/m ist die elektrische Feldkonstante und $\hat{r}_{2\to 1}$ ist der Einheitsvektor, der von Elektron 2 auf das Elektron 1 zeigt.

Elektron 1 ist an der Position

$$\vec{r}_1 = 3\hat{x} + 3\hat{y} - 3\hat{z}$$
 [nm],

und Elektron 2 an der Position

$$\vec{r}_2 = 2\hat{x} + 2\hat{y} + 2\hat{z}$$
 [nm].

Welche Kraft wirkt auf Elektron 1?

$$ec{F} = egin{bmatrix} \hat{x} + egin{bmatrix} \hat{y} + egin{bmatrix} \hat{z} \ [ext{N}] \end{bmatrix}$$
 Lösung

511.015 Physik M

Alles über die Vektoren $ec{A}$ und $ec{B}$

$$\vec{A} = 2$$
3

$$\vec{B} = 3$$

Auskunft ueber A und B

$$ec{A} = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} \quad ec{B} = egin{bmatrix} -1 \ 3 \ -5 \end{bmatrix}$$

Die Länge von
$$\vec{A}$$
 ist $\left| \vec{A} \right| = \sqrt{A_x^2 + A_y^2 + A_z^2} = \sqrt{\left(1\right)^2 + \left(2\right)^2 + \left(3\right)^2} = 3.7416574$.

Die Länge von
$$\vec{B}$$
 ist $\left| \vec{B} \right| = \sqrt{B_x^2 + B_y^2 + B_z^2} = \sqrt{\left(-1\right)^2 + \left(3\right)^2 + \left(-5\right)^2} = 5.9160798$.

Das innere Produkt (auch Skalarprodukt genannt) von \vec{A} und \vec{B} ist

$$\vec{A} \cdot \vec{B} = \left| \vec{A} \right| \left| \vec{B} \right| \cos(\theta) = A_x B_x + A_y B_y + A_z B_z = (1)(-1) + (2)(3) + (3)(-5) = -10$$

Hier ist θ der Winkel zwischen den beiden Vektoren.

Kräfte

Coulombkraft
Newtonsches Gravitationsgesetz
Lorentzkraft
Hookesches Gesetz
Reibungskraft

Coulombkraft

Die elektrostatische Kraft, die auf Elektron 1 aufgrund der Ladung von Elektron 2 wirkt

$$\vec{F} = \frac{q_1 q_2}{4\pi\varepsilon_0 \left| \vec{r}_2 - \vec{r}_1 \right|^2} \, \hat{r}_{2 \to 1}$$

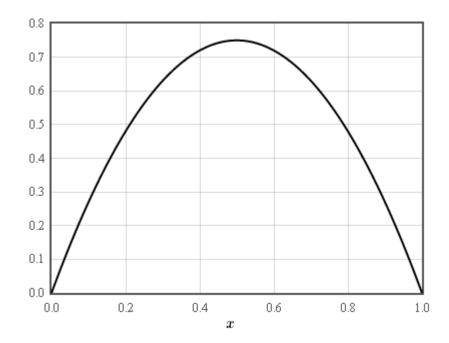
Ladung q_1 , q_2 [C] = [A s] elektrische Feldkonstante $\varepsilon_0 = 8.854187817 \times 10^{-12}$ [F/m]=[A²s⁴/kg m³]

Newtonsches Gravitationsgesetz

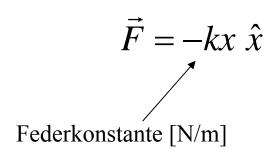
$$\vec{F} = \frac{Gm_1m_2}{|\vec{r}_2 - \vec{r}_1|^2} \,\hat{r}_{2 \to 1}$$

in der Nähe der Erdoberfläche

$$\vec{F} = -m_1 \hat{g} \hat{z}$$
 Erdbeschleunigung

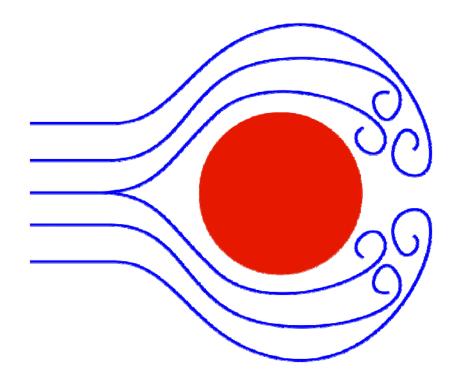

$$g = \frac{Gm_{erde}}{r_{erde}^2} = \frac{6.6726 \times 10^{-11} \ 5.97219 \times 10^{24}}{\left(6.371 \times 10^6\right)^2} = 9.8174 \ \text{m/s}^2$$

$$m_2 = m_{erde}$$


Lorentzkraft

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

konstantes elektrisches Feld $\vec{F} = q\vec{E}$


Hookesches Gesetz

Reibungskraft (Strömungswiderstand)

$$\vec{F} = -a\vec{v} - b\vec{v} |\vec{v}| - c\vec{v} |\vec{v}|^2 + \cdots$$

