Institute for Electron Microscopy and Nanoanalysis FELMI-ZFE Graz Centre for Electron Microscopy

Micromechanics

Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b

^a Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, AUSTRIA ^b Graz Centre for Electron Microscopy, 8010 Graz, AUSTRIA

16 May 2017

Outline

- In this part so called Micro Electro Mechanical Systems (MEMS) are in the main focus
- We start with the definition what MEMS actually are
- Then we briefly discuss the main fabrication routes
- We then discuss a series of different MEMS applications by means of their operation principle
- Finally, we have a look on micromechanics itself to see possibilities and limitations

Scanning electron micrograph of an SOI-based piezoresistive accelerometer, fabricated in a single fabrication step.

canning electron micrograph of an SOI-based piezoresistive accelerometer, fabricated in a single fabrication step.

WHAT IS A MEMS?

International Technology Roadmap for Semiconductors

- Although the definition slightly varies, a system is called Micro-Electro-Mechanical-System if
 - 1. the relevant part have at least one dimension D in the range \rightarrow 100 µm \leq D \leq 0.1 µm

International Technology Roadmap for Semiconductors

- Although the definition varies a little, a system is called Micro-Electro-Mechanical-System if
 - 1. the relevant part have at least one dimension D in the range \rightarrow 1000 µm \leq D \leq 0.1 µm
 - 2. they contains actuators \rightarrow something IS moved by an electrical signal

piezoelectric movement

electrostatically driven movement

6

International Technology Roadmap for Semiconductors

- Although the definition varies a little, a system is called Micro-Electro-Mechanical-System if
 - 1. the relevant part have at least one dimension *D* in the range \rightarrow 1000 µm \leq D \leq 0.1 µm
 - 2. they contains actuators \rightarrow something IS moved by an electrical signal
 - 3. they contains mechanical sensors \rightarrow something MOVES which is then detected electrically

sensors

7

International Technology Roadmap for Semiconductors

- Typically, a MEMS device can not operate on its own but is mostly packaged together with an integrated circuit (IC)
- The IC provides an electronic interface to the sensor or actuator, signal processing / compensation, and analog and or digital output
- The MEMS can be integrated in two different ways
 - 1. Monolithic integration \rightarrow full integration in the relevant IC chip
 - 2. Co-integrated \rightarrow MEMS system is on a separate chip and packaged together with the IC

sensor and relevant electronics are separated

NICE ... BUT IS THAT RELEVANT?

Relevance

- This area is very matured as it started about 55 years ago
 - − 1961 \rightarrow first silicon pressure sensor (Kurz et-al)
 - − 1967 \rightarrow resonant gate transistor (Nathanson, et-al)
- Beside the highly important application as nano-probe for Atomic Force Microscopy (AFM), MEMS can be found in many commercial everyday products:
 - pressure sensors
 - gas sensors
 - microphones
 - accelerometers
 - gyroscopes
 - digital light projectors
 - ink jet printer cartridges
 - micro-motor systems
 - communication devices
 - … and many more …

9

Cantilever Drain Bias Gate Flectroce Output Load Resistor o Output Drain Diffusion Input Signal Channel Polarization Voltage Force Plate Offusion Silicon substrate

An Intensive Example - Automotive

Applications for MEMS in automobiles

Microphones

Uncooled IR

Oscillators

Accelerometers

Micro displays

Others

Gyroscopes

Optical MEMS

Pressure sensors

Combos

RF MEMS

MEMS Market

FELMI-ZFE

InkJet heads

Compasses

Microfluidics

HOW TO FABRICATE MEMS?

Fabrication Approaches

MEMS processing iteratively uses three main processes

1. Patterning \rightarrow usually resist based to define the selected area fabrication of subsequent layers

Fabrication Approaches

14

MEMS processing iteratively uses three main processes

- 1. Patterning \rightarrow usually resist based to define the selected area fabrication of subsequent layers
- 2. Deposition \rightarrow creation of a material film from Å up to about 100 μ m
 - Chemical \rightarrow gas stream reacts (condenses) on the surface
 - Physical \rightarrow direct material condensation (reaction) on the surface

Fabrication Approaches

MEMS processing iteratively uses three main processes

- 1. Patterning \rightarrow usually resist based to define the selected area fabrication of subsequent layers
- 2. Deposition \rightarrow creation of a material film from Å up to about 100 μ m
 - Chemical ightarrow gas stream reacts (condenses) on the surface
 - Physical \rightarrow direct material condensation (reaction) on the surface
- 3. Etching \rightarrow removing materials on selected (patterning) or non-selected areas
 - Wet etching \rightarrow solution based with high chemical selectivity
 - Dry etching → sputtering (material implantation) and / or plasma / gas approaches

Fabrication Methods

In MEMS microfabrication there are typical two different basic approaches

- 1. Bulk machining for the "straightforward" material removal
 - Selective or non-selective material removal (patterning dependent)
 - Both, physical and chemical material removing is used
 - The latter, however, is more often used as it allows two different types
 - Isotropic \rightarrow spatially homogeneous independent on the materials crystallographic structure
 - Anisotropic \rightarrow different etch rates in different crystallographic orientations
- 2. Surface machining
 - This process is different as it allows the fabrication of free-standing surface layers
 - Lets have a closer look on that

a. bulk micromachining

anisotropic etching

b. surface micromachining

Surface Micromachining for Freestanding Structures

- The key to fabricate free-standing regions is the introduction of a sacrificial layer, smart patterning design and a multistep fabrication procedure
- It starts with the introduction of the sacrificial layer
- This is followed by the resist layer and its patterning
- And is finalized by the removal of the sacrificial layer

Advanced Freestanding Structures

- Challenge: how to "free" only SOME parts why the others should be fixed with the substrate?
- While the first two steps remain the same, the buried oxide layer (lower red region) can then be removed in a second step to vertically release large structures (again the accelerometer)

(Source: Alcatel Micro Machining Systems)

Multi Level Processing – A Close Look

micro rotation device

FELMI-ZFE

Multi Level Processing – A Close Look

micro rotation device

Multi Level Processing

21

• With this approach even highly complex MEMS concept can be realized (~ 10k€ per 5x5 mm chip)

APPLICATIONS – PART I

Atomic Force Microscopy – Bulk Machining

- Atomic Force Microscopy (AFM) has been evolved into a standard surface analyses tool to access 3D morphology and material properties on the nanoscale
- The essential element, however, is the cantilever with a nanoscale tip
- How to fabricate that?

AFM - Adding Further Functionalities

- A smart combination of these multi-step application procedures allows integration of additional functionalities in AFM cantilever
- For instance, so called "hollow cantilever / tips" have been demonstrated for dynamic nanofluidic applications

A)

100 µm

100 µm

AFM - Adding Further Functionalities

- A smart combination of these multi-step application procedures allows integration of additional functionalities in AFM cantilever
- For instance, so called "hollow cantilever / tips" have been demonstrated for dynamic nanofluidic applications

AFM - Adding MEMS Elements

- However, such systems only become MEMS if actuating and / or sensing elements are added
- As example, adding a thin, piezo-resistive layer enables the monolithic integration of a detection element

AFM - Adding MEMS Elements

- In this special case, this eliminates the space consuming optical detection system
- Advantages are the
 - Much more simple handling
 - Integratability in highly space confined systems

Accelerometers

As the name says, this type measures acceleration for application in

- Phones
- Game controllers
- Airbag sensors
- Machine vibrations
- Seismic activity
- Pedometers
- Inertial navigation systems
- RC flight components

Accelerometers – Capacitive Basic Principle

It bases on the an accelerated mass which is changes the capacity relative to neighbored electrodes \rightarrow easy electric detection

FELMI-ZF

Accelerometers – Capacitive Basic Principle

- The sensor responses 1) on the displacement x and 2) on the entailed change in the capacity C
- These quantities, in turn, depend on
 - x = -m.a/k \rightarrow m ... mass; k ... spring constant; a ... acceleration
 - $C = \varepsilon A/d$ $\rightarrow \varepsilon ... dielectric constanct; A ... capacitance area; d ... separation distance <math>(f_{(x)})$
- From that it is obvious that the design can be adapted to maximize the sensitivity via
 - Increasing the mass m (larger proof mass body)
 - Reducing the spring constant m (reducing the spring cross sections)
 - Increasing the capacitance area (many, high electrodes)

Multi-Axis Accelerometers

- If the movement is now perpendicular to the before discussed direction the capacity is homogenously in- / decreasing for both C1 and C2
- This can be used to enable a two axis accelerometer!

Multi-Axis Accelerometers

- If the movement is now perpendicular to the before discussed direction the capacity is homogenously in- / decreasing for both C1 and C2
- This can be used to enable a two axis accelerometer!
- By adding a third electrode in vertical direction, a 3-axes device can be realized
- Real devices use large comb structures in X and Y to clearly differentiate between the X and Y

- Instead of a capacitive detection the sensing mechanism can also use the piezoelectric effect
- This effect bases on low concentration dopants (mostly conductive species)
- If the material is stressed or strained it changes its conductivity
- When such materials or doping zones are fabricated the right way it gives high flexibility

FELMI-ZFE

• Basic setup is simpler in geometry but more complex by its layer sequence

• Electric operation requires complex models

Advantages:

- The overall structure is usually much simpler and smaller than for capacitive sensors
- The sensors usually allow high frequency sensing
- As the design can be done more rigid higher accelerations can be measured (up to 6000 g)
- Low hysteresis (compared to piezoelectric MEMS see later)

Disadvantages

- Much more complex operation w.r.t. electric readout
- Environmental sensitive (T, humidity, ...)
- Not long time stable

capacitive

- In contrast to piezoresistivity, the piezoelectric effect is more dedicated to the crystal structures
- When attaching an electrode on top and on bottom, the mechanical deformation induces a voltage which can be measured (materials could be quartz, Zinc-Oxide (ZnO), Lead-Titanate (PbTiO₃) or Lead-free Bariumtitanate (BaTiO₃).
- The essential part, however, is that this effect can be TURNED AROUND, meaning that applying a voltage leads to mechanical deformation with sub-nanometer accuracy (very important later on)

• These sensors consist of a multi-layer structure with top and bottom electrodes and the piezoelectric material in the center

- These sensors consist of a multi-layer structure with top and bottom electrodes and the piezoelectric material in the center
- Once the proof mass bends the beam the piezoelectric effect causes the desired voltage
- However, the spatial position of the sensor is absolutely essential!

Advantages:

- The design is simple and robust which minimizes fabrication efforts
- The sensors usually allow high frequency sensing
- As the design can be done more rigid higher accelerations can be measured (up to 6000 g)

Disadvantages

- Much more complex operation w.r.t. electric readout
- No static measurements!
- Environmental sensitive (T, humidity, ...)
- Not long time stable
- Hysteresis effects

Accelerometers – Principle Comparison

